Issue 38, 2017

Elastic deformation of soft coatings due to lubrication forces

Abstract

Elastic deformation of rigid materials with soft coatings (stratified materials) due to lubrication forces can alter the interpretation of dynamic surface forces measurements and prevent contact formation between approaching surfaces. Understanding the role of elastic deformation on the process of fluid drainage is necessary, in particular for the case where one (or both) of the interacting materials consists of a rigid substrate with a soft coating. We combine lubrication theory and solid linear elasticity to describe the dynamic of fluid drainage past a compliant stratified boundary. The analysis presented covers the full range of coating thicknesses, from an elastic foundation to a half-space for an incompressible coating. We decouple the individual contributions of the coating thickness and material properties on the elastic deformation, hydrodynamic forces, and fluid film thickness. We obtain a simple expression for the shift in contact position during force measurements that is valid for many experimental conditions. We compare directly the effect of stratification on the out-of-contact deformation to the well-known effect of stratification on indentation. We show that corrections developed for stratification in contact mechanics are not applicable to elastohydrodynamic deformation. Finally, we provide generalized contour maps that can be employed directly to estimate the elastic deformation present in most dynamic surface force measurements.

Graphical abstract: Elastic deformation of soft coatings due to lubrication forces

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2017
Accepted
10 Aug 2017
First published
10 Aug 2017

Soft Matter, 2017,13, 6718-6729

Elastic deformation of soft coatings due to lubrication forces

Y. Wang, M. R. Tan and J. Frechette, Soft Matter, 2017, 13, 6718 DOI: 10.1039/C7SM01061C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements