Issue 39, 2017

Transfer matrix theory of polymer complex coacervation

Abstract

Oppositely charged polyelectrolytes can undergo a macroscopic, associative phase separation in solution, via a process known as complex coacervation. Significant recent effort has gone into providing a clear, physical picture of coacervation; most work has focused on improving the field theory picture that emerged from the classical Voorn–Overbeek theory. These methods have persistent issues, however, resolving the molecular features that have been shown to play a major role in coacervate thermodynamics. In this paper, we outline a theoretical approach to coacervation based on a transfer matrix formalism that is an alternative to traditional field-based approaches. We develop theoretical arguments informed by experimental observation and simulation, which serve to establish an analytical expression for polymeric complex coacervation that is consistent with the molecular features of coacervate phases. The analytical expression provided by this theory is in a form that can be incorporated into more complicated theoretical or simulation formalisms, and thus provides a starting point for understanding coacervate-driven self-assembly or biophysics.

Graphical abstract: Transfer matrix theory of polymer complex coacervation

Associated articles

Article information

Article type
Paper
Submitted
31 May 2017
Accepted
18 Aug 2017
First published
21 Aug 2017

Soft Matter, 2017,13, 7001-7012

Transfer matrix theory of polymer complex coacervation

T. K. Lytle and C. E. Sing, Soft Matter, 2017, 13, 7001 DOI: 10.1039/C7SM01080J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements