Issue 35, 2017

Effects of stretching on the frictional stress of rubber

Abstract

In this paper, we report on new experimental results on the effects of in-plane surface stretching on the friction of poly(dimethylsiloxane) (PDMS) rubber with smooth rigid probes. Friction-induced displacement fields are measured at the surface of the PDMS substrate under steady-state sliding. Then, the corresponding contact pressure and frictional stress distributions are determined from an inversion procedure. Using this approach, we show that the local frictional stress τ is proportional to the local stretch ratio λ at the rubber surface. Additional data using a triangular flat punch indicate that τ(λ) relationship is independent on the contact geometry. From friction experiments using pre-stretched PDMS substrate, it is also found that the stretch-dependence of the frictional stress is isotropic, i.e. it does not depend on the angle between stretching and sliding directions. Potential physical explanations for this phenomenon are provided within the framework of Schallamach's friction model. Although the present experiments are dealing with smooth contact interfaces, the reported τ(λ) dependence is also relevant to the friction of statistically rough contact interfaces, while not accounted for in related contact mechanics models.

Graphical abstract: Effects of stretching on the frictional stress of rubber

Article information

Article type
Paper
Submitted
01 Jun 2017
Accepted
04 Aug 2017
First published
04 Aug 2017

Soft Matter, 2017,13, 5849-5857

Effects of stretching on the frictional stress of rubber

A. Chateauminois, D. T. Nguyen and C. Frétigny, Soft Matter, 2017, 13, 5849 DOI: 10.1039/C7SM01092C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements