Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures†
Abstract
Membrane tubulation induced by banana-shaped protein rods is investigated by using coarse-grained meshless membrane simulations. It is found that tubulation is promoted by laterally isotropic membrane inclusions that generate the same sign of spontaneous curvature as the adsorbed protein rods. The inclusions are concentrated in the tubules and reduce the bending energy of the tip of the tubules. On the other hand, inclusions with an opposite curvature suppress tubulation by percolated-network formation at a high protein-rod density while they induce the formation of a spherical membrane bud at a low rod density. When equal amounts of the two types of inclusions (with positive and negative curvatures) are added, their effects cancel each other for the first short period but later the tubulation is slowly accelerated. Positive surface tension suppresses tubulation. Our results suggest that the cooperation of scaffolding of BAR (Bin/Amphiphysin/Rvs) domains and isotropic membrane inclusions is important for tubulation.