Issue 37, 2017

Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations

Abstract

We present results from all-atom molecular dynamics simulations for the structural properties of oligomeric lactic acid chains (OLA) grafted to the surface of cellulose nanocrystals (CNCs) and immersed in the melt of polylactic acid (PLA). Earlier, we have found that the distribution of free ends of OLA molecules is bimodal [Glova et al., Polym. Int., 2016, 65(8), 892]. The results cannot be explained within the standard picture of uncharged polymer brushes exposed to the melt of a chemically identical polymer. Although the oligomeric brushes of the OLA chains are uncharged, they have partial polarization charges producing a non-zero dipole moment of the monomeric chain unit. We study the influence of partial charges on the structure of the layer of OLA chains grafted to the CNC surface. A detailed analysis of the conformations of the grafted chains shows that interaction of partial charges in the models causes bending of the OLA molecules toward the cellulose surface, forming a hairpin structure. The observed separation of the grafted chains into two populations increases with grafting density. We demonstrate that hydrogen bonds can be formed between the free ends of the grafted chains and the CNC surface, but they do not affect the brush structure significantly. Thus, dipole–dipole interactions turn out to be the key factor governing the unusual conformations of grafts.

Graphical abstract: Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2017
Accepted
11 Sep 2017
First published
11 Sep 2017

Soft Matter, 2017,13, 6627-6638

Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations

A. D. Glova, S. V. Larin, S. G. Falkovich, V. M. Nazarychev, D. A. Tolmachev, N. V. Lukasheva and S. V. Lyulin, Soft Matter, 2017, 13, 6627 DOI: 10.1039/C7SM01419H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements