Issue 44, 2017

Phase transfer of TiO2 nanoparticles from water to ionic liquid triggered by phosphonic acid grafting

Abstract

Controlling the interface between TiO2 nanocrystals and ionic liquids is of high fundamental and applied interest for energy storage and conversion devices. Phase transfer of nanoparticles from a synthesis medium to a processing or an application medium plays a significant role in nanotechnology. Here we demonstrate that surface modification with phosphonic acids bearing cationic end-groups can trigger the phase transfer of TiO2 nanoparticles from an aqueous sol to a typical water-immiscible ionic liquid, [Emim][NTf2]. The transfer involves both the grafting of the phosphonic acid moiety and the exchange of the counter ion of the cationic end-group by NTf2 anions, as demonstrated by solid-state NMR, elemental analysis and independent grafting and ion exchange experiments. Furthermore, the colloidal stability of the TiO2 sols in [Emim][NTf2] strongly depends on the hydrophobic character of the cationic end-groups.

Graphical abstract: Phase transfer of TiO2 nanoparticles from water to ionic liquid triggered by phosphonic acid grafting

Supplementary files

Article information

Article type
Communication
Submitted
18 Jul 2017
Accepted
18 Oct 2017
First published
18 Oct 2017

Soft Matter, 2017,13, 8023-8026

Phase transfer of TiO2 nanoparticles from water to ionic liquid triggered by phosphonic acid grafting

R. Bhandary, J. G. Alauzun, P. Hesemann, A. Stocco, M. In and P. H. Mutin, Soft Matter, 2017, 13, 8023 DOI: 10.1039/C7SM01424D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements