Wrinkled labyrinths in critical demixing ferrofluid†
Abstract
A thin film of a critical ferrofluid mixture undergoes a sequence of transitions in a magnetic field. First the application of a field induces a critical demixing of the fluid into cylindrical droplets of the minority phase immersed in an extended majority phase. At a second critical field the cylindrical shape is destabilized and transforms into a labyrinth pattern. A third wrinkling transition occurs at even higher field if the liquid has a liquid/air interface. The wrinkling is absent if the droplet has a cover-slide on top. We explain the wrinkling by the wetting behavior of the liquid/air interface that shifts the surface region away from a critical demixing point.