Issue 3, 2017

Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage

Abstract

As an important energy utilization mode, thermal energy is closely related to human life and social production. Phase change materials have been widely adopted to store thermal energy to improve its utilization efficiency. However, the inherent low energy conversion ability of these materials is one of the key problems to be resolved urgently. In this paper, we report novel magnetic- and sunlight-driven energy conversion and storage nanocomposites based on Fe3O4-functionalized graphene nanosheet (Fe3O4–GNS) embedded form-stable polymer phase change materials. Owing to the excellent magnetocaloric performance of Fe3O4 and the universal photoabsorption and photothermal conversion of graphene, the nanocomposites can effectively convert magnetic or light energy into thermal energy under an alternating magnetic field or solar illumination. The energy is stored by phase change materials during the phase transition process. The obtained hybrid nanocomposites exhibit excellent thermal stability with high melting–freezing enthalpy and excellent reversibility. Furthermore, the novel nanocomposites show the characteristics of form-stable phase transformation. The Fe3O4–GNS embedded phase change material composites for energy conversion and storage are expected to open up a rich field of energy materials.

Graphical abstract: Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
22 Oct 2016
First published
22 Oct 2016

J. Mater. Chem. A, 2017,5, 958-968

Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage

W. Wang, B. Tang, B. Ju, Z. Gao, J. Xiu and S. Zhang, J. Mater. Chem. A, 2017, 5, 958 DOI: 10.1039/C6TA07144A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements