Issue 1, 2017

Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li–S batteries

Abstract

Lithium–sulfur (Li–S) batteries are highly attractive as energy storage devices due to their low cost and high energy density. The undesired capacity degradation caused by the polysulfide shuttle, however, has hindered their commercialization. Herein, a Co3O4 nanoneedle array on carbon cloth (CC@Co3O4) nanocomposite has been prepared and demonstrated for the first time as a multifunctional “super-reservoir” electrode to prolong the cycle life of Li–S batteries. Owing to the polar surface of the Co3O4 nanoneedle array, soluble lithium polysulfides (Li2Sn, 4 < n < 8) can be effectively absorbed and then transformed to insoluble Li2S2/Li2S which evenly covers the surface of the Co3O4 nanoneedle during the discharge process. Further, during the charge process, the Co3O4 nanoneedle can catalyze the electrochemical transformation of Li2S2/Li2S into soluble polysulfides. A high initial capacity of 1231 mA h g−1 at 0.5C and a slow capacity decay of 0.049%/cycle at 2.0C over 500 cycles were achieved; excellent rate performance was also obtained.

Graphical abstract: Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li–S batteries

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2016
Accepted
10 Nov 2016
First published
10 Nov 2016

J. Mater. Chem. A, 2017,5, 250-257

Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li–S batteries

Z. Chang, H. Dou, B. Ding, J. Wang, Y. Wang, X. Hao and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 250 DOI: 10.1039/C6TA07202J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements