Issue 3, 2017

Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors

Abstract

Rational assembly and hetero-growth of hybrid structures consisting of multiple components with distinctive features are a promising and challenging strategy to develop materials for energy storage applications. Herein, we propose a supercapacitor electrode comprising a three-dimensional self-supported hierarchical MnCo-layered double hydroxides@Ni(OH)2 [MnCo-LDH@Ni(OH)2] core–shell heterostructure on conductive nickel foam. The resultant MnCo-LDH@Ni(OH)2 structure exhibited a high specific capacitance of 2320 F g−1 at a current density of 3 A g−1, and a capacitance of 1308 F g−1 was maintained at a high current density of 30 A g−1 with a superior long cycle lifetime. Moreover, an asymmetric supercapacitor was successfully assembled using MnCo-LDH@Ni(OH)2 as the positive electrode and activated carbon (AC) as the negative electrode. The optimized MnCo-LDH@Ni(OH)2//AC device with a voltage of 1.5 V delivered a maximum energy density of 47.9 W h kg−1 at a power density of 750.7 W kg−1. The energy density remained at 9.8 W h kg−1 at a power density of 5020.5 W kg−1 with excellent cycle stability.

Graphical abstract: Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2016
Accepted
02 Nov 2016
First published
02 Nov 2016

J. Mater. Chem. A, 2017,5, 1043-1049

Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors

S. Liu, S. C. Lee, U. Patil, I. Shackery, S. Kang, K. Zhang, J. H. Park, K. Y. Chung and S. Chan Jun, J. Mater. Chem. A, 2017, 5, 1043 DOI: 10.1039/C6TA07842G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements