Issue 1, 2017

Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells

Abstract

We synthesized single-crystalline Sn-based oxides for use as electron-transporting layers (ETLs) in perovskite solar cells (PSCs). The control of the Zn-to-Sn cation ratio (Zn/Sn = 0–2) in a fixed concentration of hydrazine solution leads to the formation of various types of Sn-based oxides, i.e., spherical SnO2 and Zn2SnO4 nanoparticles (NPs), SnO2 nanorods, and Zn2SnO4 nanocubes. In particular, a ratio of Zn/Sn = 1 results in nanocomposites of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes. This is related to the concentration of free hydrazine unreacted with Zn and Sn ions in the reaction solution, because the resulting OH concentration affects the growth rate of intermediate phases such as ZnSn(OH)6, Zn(OH)42− and Sn(OH)62−. Additionally, we propose plausible pathways for the formation of Sn-based oxides in hydrazine solution. The Sn-based oxides are applied as ETLs and annealed at a low temperature below 150 °C in PSCs. The PSCs fabricated by using the nanocomposite ETLs consisting of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes exhibit superior device performance to TiO2-based PSCs due to their excellent charge collection ability and optical properties, achieving a power conversion efficiency of ≥17%.

Graphical abstract: Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells

Supplementary files

Article information

Article type
Communication
Submitted
02 Oct 2016
Accepted
04 Nov 2016
First published
04 Nov 2016

J. Mater. Chem. A, 2017,5, 79-86

Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells

E. J. Yeom, S. S. Shin, W. S. Yang, S. J. Lee, W. Yin, D. Kim, J. H. Noh, T. K. Ahn and S. I. Seok, J. Mater. Chem. A, 2017, 5, 79 DOI: 10.1039/C6TA08565B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements