Issue 4, 2017

Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement

Abstract

We report a simple and effective interface engineering method for achieving highly efficient planar perovskite solar cells (PSCs) employing SnO2 electron selective layers (ESLs). Herein, a 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) was used to modify the SnO2 ESL/perovskite layer interface. This APTES SAM demonstrates multiple functions: (1) it can increase the surface energy and enhance the affinity of the SnO2 ESL, which induce the formation of high quality perovskite films with a better morphology and enhanced crystallinity. (2) Its terminal functional groups form dipoles on the SnO2 surface, leading to a decreased work function of SnO2 and enlarged built-in potential of SnO2/perovskite heterojunctions. (3) The terminal groups can passivate the trap states at the perovskite surface via hydrogen bonding. (4) The thin insulating layer at the interface can hinder electron back transfer and reduce the recombination process at the interface effectively. With these desirable properties, the best-performing cell employing a APTES SAM modified-SnO2 ESL achieved a PCE over 18% and a steady-state efficiency of 17.54%. Impressively, to the best of our knowledge, the obtained VOC of 1.16 V is the highest value reported for the CH3NH3PbI3 (MAPbI3) system. Our results suggest that the ESL/perovskite interface engineering with a APTES SAM is a promising method for fabricating efficient and hysteresis-less PSCs.

Graphical abstract: Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2016
Accepted
11 Dec 2016
First published
12 Dec 2016

J. Mater. Chem. A, 2017,5, 1658-1666

Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement

G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan and G. Fang, J. Mater. Chem. A, 2017, 5, 1658 DOI: 10.1039/C6TA08783C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements