Issue 5, 2017

Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation

Abstract

Efficient water oxidation remains a principal challenge for clean fuels via water splitting. Polyoxometalates (POMs) are promising water oxidation catalysts in a neutral medium but their application is commonly limited by low electrical conductivity and poor adhesiveness arising from bulky and electrically insulating ligands. Here we report linker-free spontaneous binding of tetracobalt-based polyoxometalates (Co4POMs) on nitrogen-doped carbon nanotubes (NCNTs) via electrostatic hybridization. Protonated nitrogen-dopant sites at NCNTs enable linker-free immobilization of the Co4POMs and fluent electron transfer in the resultant Co4POM/NCNT hybrid structures, as demonstrated by the low overpotential of 370 mV for the water oxidation at pH 7. Accordingly, the hybrids exhibit fast reaction kinetics with a turnover frequency of 0.211 s−1 at 2.01 V vs. RHE. Density functional theory calculation proposes that POMs vertically align at the NCNT surface exposing the maximal catalytic surfaces. This work suggests a reliable route to highly efficient water oxidation catalysis by employing POMs under neutral conditions and NCNTs as self-binding nanoelectrodes in a synergistic well-oriented hybrid structure.

Graphical abstract: Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation

Supplementary files

Article information

Article type
Communication
Submitted
27 Oct 2016
Accepted
03 Jan 2017
First published
03 Jan 2017

J. Mater. Chem. A, 2017,5, 1941-1947

Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation

G. Y. Lee, I. Kim, J. Lim, M. Y. Yang, D. S. Choi, Y. Gu, Y. Oh, S. H. Kang, Y. S. Nam and S. O. Kim, J. Mater. Chem. A, 2017, 5, 1941 DOI: 10.1039/C6TA09306J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements