Issue 5, 2017

Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform

Abstract

Nanocarbons with unique physicochemical properties have been considered typical sustainable materials for use as catalyst supports and directly as catalysts. Unfortunately, the powder form of nanocarbons renders them difficult to use in industrial processes due to the high pressure drop, their difficulty of handling as well as health injuries caused to human beings. Herein, hierarchical carbon fibers/carbon nanofibers (CF/CNF) composites, with high effective surface areas and controlled macroscopic shapes, were successfully synthesized through a combination of electrospinning (ES) and chemical vapour deposition (CVD). A web of poly(acrylonitrile)/poly(vinyl pyrrolidone) (PAN/PVP) composite fibers embedding a nickel salt was firstly produced by electrospinning. After a carbonization step, the polymeric material was converted into porous carbon embedding nickel nanoparticles, available on the fiber surface. Then, the catalytic growth of the CNFs was carried out from the nickel nanoparticles by CVD leading finally to the formation of a hierarchical carbon web of hairy fibers with a high effective surface area. The density, diameters and lengths of the CNFs attached on the surface of the CFs could be finely tuned by adjusting the CVD conditions. The specific surface area of the CF/CNF monolith amounted to more than 200 m2 g−1 along with high accessibility due to the small dimensions. The hierarchical CF/CNF composite has been used as a metal-free catalyst for the steam- and oxygen-free catalytic dehydrogenation of ethylbenzene to styrene. The catalytic results have pointed out that such a monolith can be efficiently used as a material platform for different applications , going from catalysis to wastewater treatment, thanks to the high effective surface area and reactivity of the CNF with prismatic planes.

Graphical abstract: Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2016
Accepted
07 Dec 2016
First published
08 Dec 2016

J. Mater. Chem. A, 2017,5, 2151-2162

Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform

Y. Liu, J. Luo, C. Helleu, M. Behr, H. Ba, T. Romero, A. Hébraud, G. Schlatter, O. Ersen, D. S. Su and C. Pham-Huu, J. Mater. Chem. A, 2017, 5, 2151 DOI: 10.1039/C6TA09414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements