Issue 6, 2017

Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors

Abstract

Normally, structural details of the tissue of bio-waste affect the final properties of carbon materials. In this study, we selected two types of bio-wastes, Platanus fruit and willow catkins, to prepare hollow carbon micro-fibers, where their size and microstructure are dependent on the Platanus fruit fibers and willow catkin fibers. The electrode properties of the Platanus-derived hollow micro carbon fibers are much higher than those of the willow-derived micro carbon fibers, although carbonization and activation processes are the same for the two types of materials. It is found that the content of the organic-related elements, C, N, and S, and the content of inorganic ions, K or Na, are different. The high content of N and S induced a high doping concentration of the hollow carbon micro-fibers, which endows the Platanus-derived carbon materials with high conductivity, and the high content of inorganic elements causes a self-activation effect during the carbonization process and results in a special porous microstructure of the Platanus-derived carbon. Therefore, compared with the willow-derived hollow carbon micro-fibers, after carbonization and KOH activation, the hollow carbon micro-fibers derived from Platanus seeds possessed much higher supercapacitor electrode properties. After carbonization and activation under optimized conditions, the specific capacitance of the Platanus- and willow-derived hollow carbon micro-fibers are 304.65 F g−1 and 276.13 F g−1, respectively, at the current density of 0.5 A g−1, with a good rate capability and 88.5% and 81.05% capacity retention at 10 A g−1, respectively. The coin-type symmetric device of these two samples with 6 M KOH electrolyte exhibited a high specific capacitance of 286.5 and 267.5 F g−1, respectively, at 0.25 A g−1 (PFs 900, WFs 800), with an excellent cycling stability and 97.03% and 91.12% capacity retention after 10 000 cycles, respectively. This work not only provided two types of promising supercapacitor carbon materials but also, most importantly, offered us clues for the design and synthesis of high-performance electrode materials using the knowledge gleaned from nature.

Graphical abstract: Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2016
Accepted
30 Dec 2016
First published
03 Jan 2017

J. Mater. Chem. A, 2017,5, 2580-2591

Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors

H. Tan, X. Wang, D. Jia, P. Hao, Y. Sang and H. Liu, J. Mater. Chem. A, 2017, 5, 2580 DOI: 10.1039/C6TA10191G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements