Issue 13, 2017

Epitaxial hetero-structure of CdSe/TiO2 nanotube arrays with PEDOT as a hole transfer layer for photoelectrochemical hydrogen evolution

Abstract

The photocatalytic decomposition of water is believed to be able to help mitigate the crisis of fossil fuel depletion. However, obtaining high and stable photoconversion efficiency remains a challenge in photocatalytic hydrogen production. Here we report an epitaxial hetero-structure of CdSe/TiO2 nanotube arrays as efficient photo-anodes via simple, room-temperature, low-cost electrochemical deposition. With the help of a similar d spacing to TiO2, the CdSe sensitizing layer is epitaxially grown on the tube wall of the TiO2 nanotubes, resulting in an ideal coherent grain boundary and single crystal growth. The resultant photo-anode produces 30% more photocurrent than those samples without a coherent grain boundary. Notably, the especial epitaxial hetero-structure is beneficial to decrease the recombination site and accelerate the separation of photogenerated electron–hole pairs. Furthermore, an ultrathin PEDOT surface layer was developed on the epitaxial hetero-structure of CdSe/TiO2 nano-tube arrays in which it functions as both a physical passivation barrier and a hole transfer layer. As a result, significantly enhanced photocurrent density and substantially better stability have been achieved. This methodology may provide a new pathway of epitaxial growth for preparing heterogeneous junction materials which have similar d spacing.

Graphical abstract: Epitaxial hetero-structure of CdSe/TiO2 nanotube arrays with PEDOT as a hole transfer layer for photoelectrochemical hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2016
Accepted
21 Feb 2017
First published
22 Feb 2017

J. Mater. Chem. A, 2017,5, 6233-6244

Epitaxial hetero-structure of CdSe/TiO2 nanotube arrays with PEDOT as a hole transfer layer for photoelectrochemical hydrogen evolution

B. Chong, W. Zhu and X. Hou, J. Mater. Chem. A, 2017, 5, 6233 DOI: 10.1039/C6TA10202F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements