2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction†
Abstract
Rational design of inexpensive, highly active, and long-term stable non-precious metal electrocatalysts for oxygen reduction reaction (ORR) is of significant importance for large-scale applications of fuel cells in practice. In this paper, we report, for the first time, the construction of 2D layered mesoporous transition metal-nitrogen-doped carbon/nitrogen-doped graphene (meso-M-N-C/N-G, M = Fe, Co, and Ni) electrocatalysts using 4,4-bipyridine as the nitrogen and carbon source and mesoporous KIT-6/N-G generated by in situ formation of KIT-6 on graphene nanosheets as a template. The meso-Fe-N-C/N-G electrocatalyst showed super electrocatalytic performance for ORR. Excitingly, its catalytic activity and durability were superior to those of Pt/C, making it a good candidate as an ORR electrocatalyst in fuel cells. The results suggested that the outstanding electrocatalytic performance of the electrocatalysts could be attributed to the unique mesoporous structure, high surface area, ultrasmall size of Fe or FeOx nanocrystals embedded in 2D layered N-G nanosheets, excellent electron transportation, homogeneous distribution of high-density pyridinic N and graphitic N, graphitic C, and abundant metal active sites (Fe-Nx). The synthesis approach can be used as a versatile route toward the construction of various 2D layered graphene-based mesoporous materials.