Issue 10, 2017

2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction

Abstract

Rational design of inexpensive, highly active, and long-term stable non-precious metal electrocatalysts for oxygen reduction reaction (ORR) is of significant importance for large-scale applications of fuel cells in practice. In this paper, we report, for the first time, the construction of 2D layered mesoporous transition metal-nitrogen-doped carbon/nitrogen-doped graphene (meso-M-N-C/N-G, M = Fe, Co, and Ni) electrocatalysts using 4,4-bipyridine as the nitrogen and carbon source and mesoporous KIT-6/N-G generated by in situ formation of KIT-6 on graphene nanosheets as a template. The meso-Fe-N-C/N-G electrocatalyst showed super electrocatalytic performance for ORR. Excitingly, its catalytic activity and durability were superior to those of Pt/C, making it a good candidate as an ORR electrocatalyst in fuel cells. The results suggested that the outstanding electrocatalytic performance of the electrocatalysts could be attributed to the unique mesoporous structure, high surface area, ultrasmall size of Fe or FeOx nanocrystals embedded in 2D layered N-G nanosheets, excellent electron transportation, homogeneous distribution of high-density pyridinic N and graphitic N, graphitic C, and abundant metal active sites (Fe-Nx). The synthesis approach can be used as a versatile route toward the construction of various 2D layered graphene-based mesoporous materials.

Graphical abstract: 2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2016
Accepted
25 Jan 2017
First published
01 Feb 2017

J. Mater. Chem. A, 2017,5, 4868-4878

2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction

L. Huo, B. Liu, G. Zhang, R. Si, J. Liu and J. Zhang, J. Mater. Chem. A, 2017, 5, 4868 DOI: 10.1039/C6TA10261A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements