Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties†
Abstract
This work introduces a new self-healing superhydrophobic coating based on dual actions by the corrosion inhibitor benzotriazole (BTA) and an epoxy-based shape memory polymer (SMP). Damage to the surface morphology (e.g., crushed areas and scratches) and the corresponding superhydrophobicity are shown to be rapidly healed through a simple heat treatment at 60 °C for 20 min. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) were used to study the anti-corrosion performance of the scratched and the healed superhydrophobic coatings immersed in a 3.5 wt% NaCl solution. The results revealed that the anti-corrosion performance of the scratched coatings was improved upon the incorporation of BTA. After the heat treatment, the scratched superhydrophobic coatings exhibited excellent recovery of their anti-corrosion performance, which is attributed to the closure of the scratch by the shape memory effect and to the improved inhibition efficiency of BTA. Furthermore, we found that the pre-existing corrosion product inside the coating scratch could hinder the scratch closure by the shape memory effect and reduce the coating adhesion in the scratched region. However, the addition of BTA effectively suppressed the formation of corrosion products and enhanced the self-healing and adhesion performance under these conditions. Importantly, we also demonstrated that these coatings can be autonomously healed within 1 h in an outdoor environment using sunlight as the heat source.