Issue 16, 2017

A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting

Abstract

Although spinel zinc ferrite (ZnFe2O4), with a band gap of 1.9 eV, is a promising photoanode material for solar water splitting, its photoelectrochemical performance is usually hindered by poor charge carrier transport. Ti4+ doping was introduced to increase the charge carrier concentration and promote charge carrier transport in the ZnFe2O4 photoanode. Here, pure and Ti4+-doped ZnFe2O4 photoanodes were prepared by a fast and effective spray pyrolysis method. In the Ti-doped ZnFe2O4 photoanode, some of the Fe3+ sites in the crystal lattice are substituted by Ti4+, as shown by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR) analyses. The results of Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS) indicated that the substitution of Fe3+ by Ti4+ enhances the charge carrier concentration and electron transfer efficiency. The Ti-doped ZnFe2O4 photoanodes exhibit a solar water-splitting photocurrent of 0.35 mA cm−2 at 1.23 V vs. RHE (reversible hydrogen electrode), which is 8.75 times higher than that of the pure ZnFe2O4 photoanodes. Hence, this study may provide a simple route to fabricate multi-metal oxide photoelectrodes through ion doping to enhance their photoelectrochemical performances.

Graphical abstract: A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2016
Accepted
02 Apr 2017
First published
03 Apr 2017

J. Mater. Chem. A, 2017,5, 7571-7577

A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting

Y. Guo, N. Zhang, X. Wang, Q. Qian, S. Zhang, Z. Li and Z. Zou, J. Mater. Chem. A, 2017, 5, 7571 DOI: 10.1039/C6TA11134C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements