Issue 14, 2017

Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process

Abstract

Li2MnO3 is an important parent component in lithium- and manganese-rich layered oxides (LMRs), which are one of the promising positive electrode materials for next-generation lithium ion rechargeable batteries. Here, we report the layered-to-spinel phase transformation in Li2MnO3 during the initial charging process to characterise its unique delithiation behaviour, which gives an insight into the relationship between the structure, superior capacities and degradation of LMR electrodes. The atomic-scale observation using scanning transmission electron microscopy (STEM) techniques suggests that the structural transformation occurs in a biphasic manner within a single particle. The formed phase has a Li-defect spinel structure, indicating that the delithiation leads to Mn migration from the transition-metal layer to the Li layer, accompanied by some oxygen release. This layered-to-spinel phase transformation is an essential bulk process in the initial activation of Li2MnO3. During the lithiation in the 1st discharge, the Mn remigration occurs and the layered structure is again formed with significant disordering. During the multiple cycles, the defect spinel structure is stabilised and becomes more oxygen-deficient with a lower Mn valency. As a consequence, the amount of inserted Li decreases, which corresponds to the capacity and voltage fading observed in Li2MnO3 and LMRs.

Graphical abstract: Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2016
Accepted
02 Mar 2017
First published
02 Mar 2017

J. Mater. Chem. A, 2017,5, 6695-6707

Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process

K. Shimoda, M. Oishi, T. Matsunaga, M. Murakami, K. Yamanaka, H. Arai, Y. Ukyo, Y. Uchimoto, T. Ohta, E. Matsubara and Z. Ogumi, J. Mater. Chem. A, 2017, 5, 6695 DOI: 10.1039/C6TA11151C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements