Issue 18, 2017

Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds

Abstract

We report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba2ZnX2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl2Si2 structure type show better performance than p-type materials due to the multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. The general performance of 212 phases is inferior to that of the 122 phases, with the Ba2ZnSb2 compound showing better performance.

Graphical abstract: Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2016
Accepted
01 Apr 2017
First published
03 Apr 2017

J. Mater. Chem. A, 2017,5, 8499-8509

Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds

J. Sun and D. J. Singh, J. Mater. Chem. A, 2017, 5, 8499 DOI: 10.1039/C6TA11234J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements