Issue 13, 2017

Biomineralization-inspired crystallization of monodisperse α-Mn2O3 octahedra and assembly of high-capacity lithium-ion battery anodes

Abstract

Uniform colloidal building-blocks enable the creation of more stable, structurally sophisticated materials. Here we describe a simple polymer-mediated approach to generate grams of monodisperse, single-crystal α-Mn2O3 nanocrystals bound by {111} facets. The technique is inspired in part by biomineralization, where organisms use macromolecular matrices or compartments to trigger the oriented nucleation and growth of crystalline phases. Polyvinylpyrrolidone (PVP) behaves as a polymeric nano-reactor by coordinating to the manganese (Mn) precursor while recruiting the NOx oxidizing agent from solution to drive the co-precipitation of the manganese oxide. PVP also serves as a molecular template to guide the nucleation of trigonal bipyramids composed of Mn3O4. The porosity of the Mn3O4 particles indicates that they form non-classically via oriented attachment instead of atom-by-atom. The particles are further oxidized and transform into single-crystal α-Mn2O3 octahedra. This co-precipitation approach is advantageous because it can generate large amounts of monodisperse nanocrystals at low economic cost. α-Mn2O3 is an alternative lithium ion battery (LIB) anode material that is earth abundant and has ∼2.7 times higher capacity than conventional graphite anodes. We assembled the monodisperse α-Mn2O3 octahedra into LIB anodes to examine their performance in a realistic device. The α-Mn2O3 octahedra exhibit good rate performance, cycling stability, coulombic efficiency and morphology retention during extended lithiation–delithiation cycles compared to previous reports for this material. We attribute the improved electrochemical performance of the α-Mn2O3 octahedra to the lack of agglomeration in the uniformly distributed electrode and improved lithiation of single crystalline α-Mn2O3 nanoparticles.

Graphical abstract: Biomineralization-inspired crystallization of monodisperse α-Mn2O3 octahedra and assembly of high-capacity lithium-ion battery anodes

Supplementary files

Article information

Article type
Paper
Submitted
31 Dec 2016
Accepted
20 Feb 2017
First published
13 Mar 2017
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2017,5, 6079-6089

Biomineralization-inspired crystallization of monodisperse α-Mn2O3 octahedra and assembly of high-capacity lithium-ion battery anodes

J. Henzie, V. Etacheri, M. Jahan, H. Rong, C. N. Hong and V. G. Pol, J. Mater. Chem. A, 2017, 5, 6079 DOI: 10.1039/C6TA11243A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements