Issue 15, 2017

Graphene-based antimicrobial polymeric membranes: a review

Abstract

Biofouling is an inevitable obstacle that impairs the overall performance of polymeric membranes, including selectivity, permeability, and long-term stability. With an increase of various biocides being utilized to inhibit biofilm formation, the enhancement of bacterial resistance against traditional bactericides is increasingly becoming an extra challenge in the development of antimicrobial membranes. Graphene-based nanomaterials are emerging as a new class of strong antibacterial agents due to their oxygen-containing functional groups, sharp edges of the one-atom-thick laminar structure, and synergistic effect with other biocides. They have been successfully employed not only to confer favorable antibacterial abilities, but also to impart superior separation properties to polymeric membranes. However, the exact bactericidal mechanism of graphene remains unclear. This review aims to examine the synthesis methods and antimicrobial behavior of graphene-based materials, offering an insight into how the nanocomposites influence their antimicrobial abilities. Most importantly, the use of graphene-based nanomaterials in the design and development of antimicrobial membranes is highlighted.

Graphical abstract: Graphene-based antimicrobial polymeric membranes: a review

Article information

Article type
Review Article
Submitted
01 Jan 2017
Accepted
27 Feb 2017
First published
28 Feb 2017

J. Mater. Chem. A, 2017,5, 6776-6793

Graphene-based antimicrobial polymeric membranes: a review

J. Zhu, J. Wang, J. Hou, Y. Zhang, J. Liu and B. Van der Bruggen, J. Mater. Chem. A, 2017, 5, 6776 DOI: 10.1039/C7TA00009J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements