Issue 13, 2017

Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds

Abstract

The growing concern about global warming, environmental pollution and energy security has increased the demand for clean energy resources in place of fossil fuel. Cost-efficient generation of hydrogen from water splitting through electrocatalysis holds tremendous promise for clean energy. Central to electrocatalysis are efficient and robust electrocatalysts composed of earth-abundant elements, which are urgently needed for realizing low-cost and high-performance energy conversion devices. Transition metal compounds (TMCs) are a group of attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER). The incorporation of foreign nonmetal atoms into TMCs is a way of controllable disorder engineering and modification of their electronic structure, and thus may realize the synergistic modulations of both activity and conductivity for efficient HER performance. In the last few years, the interest in binary-nonmetal TMCs as an efficient HER electrocatalyst has grown exponentially owing to their fascinating electronic structure and chemical properties. Here, we sum up the recent developments of binary-nonmetal TMCs in HER electrocatalysis from the viewpoint of their tunable physicochemical properties. In addition, we identify major challenges ahead in this area and refine viable strategies and future research directions that will effectively address the said challenges.

Graphical abstract: Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds

Article information

Article type
Review Article
Submitted
22 Jan 2017
Accepted
24 Feb 2017
First published
24 Feb 2017

J. Mater. Chem. A, 2017,5, 5995-6012

Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds

J. Hu, C. Zhang, X. Meng, H. Lin, C. Hu, X. Long and S. Yang, J. Mater. Chem. A, 2017, 5, 5995 DOI: 10.1039/C7TA00743D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements