Issue 18, 2017

Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution

Abstract

Hydrogen has been verified as a clean and economical energy source, due to its high mass energy density and renewability. Electrochemical water splitting is regarded as one of the most economical and eco-friendly approaches for hydrogen evolution. Recently, emerging two-dimensional (2D) nanomaterials have demonstrated their potential as distinguished non-noble catalysts for hydrogen evolution. These ultrathin nanomaterials are dramatically different from their bulk counterparts. Abundant active sites are maximally exposed and the small diffusion paths of the ultrathin nanosheets can effectively facilitate charge transfer in the electrocatalytic hydrogen evolution. Moreover, many tactics can be easily adopted in such an interesting and adjustable platform, which makes the 2D material an ideal object to explore the exciting catalytic activity and electronic transfer. Various inventive strategies regarding increasing active sites, improving intrinsic activity and enhancing electrical conductivity for enhancing catalytic performance are urgently pursued. Here, the primary criteria for evaluating catalysts in electrochemical HER is discussed, followed by a brief introduction of the superiorities of 2D nanomaterial catalysts for HER. Based on these, recent strategies for improving the catalytic activity of 2D nanomaterials are summarized. We believe this review will provide deep insights for understanding the 2D material catalysts for catalyzing HER, and aid in devising new catalysts with high catalytic activity.

Graphical abstract: Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution

Article information

Article type
Review Article
Submitted
24 Jan 2017
Accepted
24 Mar 2017
First published
24 Mar 2017

J. Mater. Chem. A, 2017,5, 8187-8208

Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution

Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng and L. Fu, J. Mater. Chem. A, 2017, 5, 8187 DOI: 10.1039/C7TA00816C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements