Issue 16, 2017

Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors

Abstract

Sulphospinel materials, such as MnCo2S4, are being widely investigated as a promising class of candidates for energy storage. The low electric conductivity and low surface area derived by the conventional processes have however limited their wide usage as a class of low-cost materials for energy storage. In this work, sulphospinel MnCo2S4 nanostructures have been rationally synthesised through a carefully controlled sulphurization process, which expresses a desirable mesoporous feature with high electrical conductivity. They show much better electrical conductivity and pronounced improvement in the electrochemical performance with a high capacitance (938 F g−1 at 20 A g−1) and excellent cycling stability, where the specific capacitance could be retained at 95% of its original value after 5000 charge–discharge cycles. To further demonstrate the great potential of sulphospinel materials, a full-type supercapacitor was assembled with MnCo2S4 on carbon cloth as the positive electrode and a (Porous Carbon Polyhedron) PCP/rGO hydrogel as the negative electrode. The full cell shows a high energy density of 43 W h kg−1 at a power density of 0.801 kW kg−1, and 16.2 W h kg−1 can be retained at a power density of 26.5 kW kg−1. Excellent cycling stability is also achieved with 87% retention after 10 000 charge–discharge cycles, demonstrating great potential for next-generation high performance supercapacitors.

Graphical abstract: Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2017
Accepted
15 Mar 2017
First published
15 Mar 2017

J. Mater. Chem. A, 2017,5, 7494-7506

Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors

A. M. Elshahawy, X. Li, H. Zhang, Y. Hu, K. H. Ho, C. Guan and J. Wang, J. Mater. Chem. A, 2017, 5, 7494 DOI: 10.1039/C7TA00943G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements