Issue 20, 2017

Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs

Abstract

Tantalum oxide (TaOx) nanoparticles (NPs) are deposited on a commercial Pt/C catalyst by an area-selective atomic layer deposition (ALD) approach to enhance the stability of the catalyst in proton exchange membrane fuel cells (PEMFCs). Due to the application of a blocking agent for protecting the Pt surface, TaOx particles are selectively nucleated and grown around Pt NPs. The TaOx loading on the Pt/C surface could be controlled precisely by varying the number of ALD cycles. When deposited on the Pt/C surface with 35 ALD cycles, the TaOx-anchored Pt NPs formed an excellent triple-junction structure of TaOx–Pt–carbon. The electrochemical durability tests indicated that the TaOx-anchored Pt/C catalyst showed comparable catalytic activity and superior long-term stability to Pt/C. Moreover, the long-term stability test in membrane electrode assembly (MEA) indicated a very low power density loss (12%) after a 120 h accelerated durability test. The significantly enhanced catalyst stability during PEMFCs operation is due to the anchoring effect of TaOxvia strong metal oxide–support interactions. This strategy shows great potential for developing highly stable catalysts for PEMFCs.

Graphical abstract: Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2017
Accepted
13 Apr 2017
First published
14 Apr 2017

J. Mater. Chem. A, 2017,5, 9760-9767

Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs

Z. Song, B. Wang, N. Cheng, L. Yang, D. Banham, R. Li, S. Ye and X. Sun, J. Mater. Chem. A, 2017, 5, 9760 DOI: 10.1039/C7TA01926B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements