Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries†
Abstract
Sb nanoparticles encapsulated in 1-D N-doped porous carbon (denoted as Sb/NPC) have been fabricated by an in situ nanoconfined replacement reaction between SbCl3 and the intermediate Ni/NPC, in which Ni/NPC was obtained by annealing the hydrothermally synthesized nickel–nitrilotriacetic acid (Ni–NTA) precursor in an argon atmosphere. The Sb nanoparticles with a size of 10–20 nm were uniformly encapsulated in the 1-D N-doped porous carbon scaffolds. When the Sb/NPC composite was applied as an anode material in the batteries, it exhibited a high reversible capacity of 556 mA h g−1 at 200 mA g−1 after 100 cycles for Li-ion batteries (LIBs) and a reversible capacity of 400.9 mA h g−1 at 100 mA g−1 after 100 cycles for Na-ion batteries (NIBs). Such enhanced electrochemical performance of the designed Sb/NPC can be attributed to the synergistic effect between uniformly dispersed Sb nanoparticles and the 1-D N-doped porous carbon matrices.
- This article is part of the themed collection: 2017 Journal of Materials Chemistry A HOT Papers