Issue 32, 2017

An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life

Abstract

The inferior cycle performance of All-solid-state lithium batteries (ASSLBs) resulting from the low mixed ionic and electronic conductivity in the electrodes, as well as the large interfacial resistance between the electrodes and the electrolyte need to be overcome urgently for commercial applications. Here, an advanced cell construction strategy has been proposed, in which a cohesive and highly conductive poly(oxyethylene) (PEO)-based electrolyte is employed both in the cathode layer and in the interface of the electrolyte/anode, leading to an ASSLB with superior interfacial contact between the electrolyte and the electrodes, and forming a three-dimensional ionic conductive network in the cathode layer. Especially, the NASICON-type ionic conductor covered with the PEO-based polymer, integrating the advantages of an inorganic electrolyte and organic electrolyte, presents an enhanced electrochemical stability and an excellent compatibility with the Li electrode. Consequently, the ASSLBs of LiFePO4 (LFP)/Li with this advanced construction strategy exhibit excellent interfacial compatibility, ultralong cycle life and high capacity, i.e., a reversible discharge capacity maintained at 127.8 mA h g−1 for the 1000th cycle at 1C with a retention of 96.6%, and an initial discharge capacity of 153.4 mA h g−1 with a high retention of 99.9% after 200 cycles at 0.1C. Besides, the high-voltage monopolar stacked batteries with a bipolar structure can be fabricated conveniently, showing an open circuit voltage (OCV) of 6.63 V with a good cycle performance. In particular, the ASSLBs present outstanding safety in terms of nail penetration and burning in fire. Therefore, this advanced cell construction strategy may generate tremendous opportunities in the search for novel emerging solid-state lithium metal batteries.

Graphical abstract: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2017
Accepted
06 Jul 2017
First published
08 Jul 2017

J. Mater. Chem. A, 2017,5, 16984-16993

An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life

Z. Zhang, Y. Zhao, S. Chen, D. Xie, X. Yao, P. Cui and X. Xu, J. Mater. Chem. A, 2017, 5, 16984 DOI: 10.1039/C7TA04320A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements