High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries†
Abstract
Due to the low density of nanostructured materials, it is still a big challenge to realize high volumetric performance instead of high specific gravimetric capacity with many state-of-the-art electrodes for compact electrochemical energy storage. Moreover, developing high-performance flexible and binder-free electrode materials is also crucial for their future applications in diverse fields, such as portable electronics and wearable devices. In this work, we designed and synthesized a Ni3V2O8/carbon cloth (CC) hierarchical structure as a flexible anode for sodium-ion batteries. Morphology-controllable growth of different Ni3V2O8/CC hierarchical structures is achieved by optimizing the synthesis parameters (e.g. the growth temperatures). The high mass loading (4 mg cm−2), ultra-high areal specific capacity (2.6 mA h cm−2 at a current density of 500 mA g−1), no addition of binders or other additives and good flexibility facilitate their application in sodium-ion batteries.