Issue 47, 2017

Evolution of hydrogen by few-layered black phosphorus under visible illumination

Abstract

Recently, a new class of two-dimensional black phosphorus (BP) with a visible direct band gap is predicted as a potential candidate for photo-catalysis applications. Here, we present the first experimental evidence of hydrogen (H2) evolution from aqueous solution by using BP (nanosheets and nanoparticles) under visible light illumination. Our experimental results describe that liquid phase exfoliated BP nanosheets and BP nanoparticles exhibit suitable energy level alignments for electron transfer and further proton reduction reactions in the solution under visible light illumination. Density functional theory (DFT) calculations predict that the H2 evolution activity of bilayer BP is independent of edge or center positions, which is unique in BP as compared to those of other 2D materials.

Graphical abstract: Evolution of hydrogen by few-layered black phosphorus under visible illumination

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2017
Accepted
13 Oct 2017
First published
27 Oct 2017

J. Mater. Chem. A, 2017,5, 24874-24879

Evolution of hydrogen by few-layered black phosphorus under visible illumination

S. K. Muduli, E. Varrla, Y. Xu, S. A. Kulkarni, A. Katre, S. Chakraborty, S. Chen, T. C. Sum, R. Xu and N. Mathews, J. Mater. Chem. A, 2017, 5, 24874 DOI: 10.1039/C7TA04889K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements