Fabrication of high-performance and low-hysteresis lead halide perovskite solar cells by utilizing a versatile alcohol-soluble bispyridinium salt as an efficient cathode modifier†
Abstract
A novel alcohol-soluble conjugated bispyridinium salt (FPyBr) is developed and used as a cathode modifier to improve the cathode interface of planar heterojunction perovskite solar cells (PHJ PVSCs). The excellent electron-withdrawing ability of bispyridinium rings endows FPyBr with a favorable energy level alignment with phenyl-C60-butyric acid methyl ester (PCBM) and the cathode (e.g., Al), which leads to an ideal ohmic contact and efficient electron transport and collection. The deep-lying highest occupied molecular orbital energy level of FPyBr can also effectively block hole carriers and thus decrease leakage current and hole–electron recombination at the cathode interface. In addition, FPyBr can n-dope PCBM through an anion-induced electron transfer process, which increases the electron mobility of PCBM drastically, thereby diminishing interfacial resistance and promoting electron transport. As a result, by incorporating an FPyBr cathode interlayer with ethanol solvent, high-performance and low-hysteresis PHJ PVSCs with a maximal power conversion efficiency (PCE) of 19.61% can be realized. In contrast, reference devices without any cathode interlayer display a distinctly worse performance, with a PCE of 16.97%. Therefore, this excellent cathode modifier provides a new opportunity to fabricate high performance multilayer PVSCs using low-temperature solution processing without interfacial erosion/mixing.