Issue 41, 2017

Significant enhancement of photovoltaic performance through introducing S⋯N conformational locks

Abstract

In this contribution, we developed a novel type of IDT-based small molecular acceptor, IDT-Tz, using thiazole as π-bridges. Through employing thiazole units as the π-bridges, nitrogen⋯sulfur noncovalent conformational locks were introduced to enhance the rigidity and planarity of the backbone, and thus reduce the reorganization energy, increase the charge transport mobility, and enhance the photovoltaic performance. The differences between the IDT-Tz and IDT-T based solar cells were fully investigated to understand the influences of the nitrogen⋯sulfur noncovalent conformational locks. The organic solar cells based on the IDT-Tz electron acceptor exhibit power conversion efficiencies (PCEs) as high as 8.4%, which is significantly higher than the PCE (4.1%) of the IDT-T based devices. This work demonstrated a novel strategy for enhancing the PCE of organic solar cells through introducing noncovalent conformational locks, which will be promising in designing novel high-performance non-fullerene materials.

Graphical abstract: Significant enhancement of photovoltaic performance through introducing S⋯N conformational locks

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2017
Accepted
02 Aug 2017
First published
03 Aug 2017

J. Mater. Chem. A, 2017,5, 21674-21678

Significant enhancement of photovoltaic performance through introducing S⋯N conformational locks

S. Yu, Y. Chen, L. Yang, P. Ye, J. Wu, J. Yu, S. Zhang, Y. Gao and H. Huang, J. Mater. Chem. A, 2017, 5, 21674 DOI: 10.1039/C7TA05774A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements