Issue 37, 2017

An ultrastable zinc(ii)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(iii), Cr(vi) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity

Abstract

A 2D zinc(II) metal–organic framework (Zn-MOF-1) formulated as [Zn(L)(H2O)]·H2O (1) (H2L = 5-(2-methylpyridin-4-yl)isophthalic acid) with blue fluorescence has been successfully obtained under hydrothermal conditions. Zn-MOF-1 contains microporous parallelogram channels with accessible Lewis-base sites, coordinated water molecules and uncoordinated carboxylates, which are easy to anchor and recognise various analytes. The fluorescence investigations demonstrated that the blue-light-emitting behaviour of Zn-MOF-1 possesses excellent water and pH stability. More importantly, this is the first reported recyclable multi-responsive Zn-MOF fluorescence sensor for Cr(III), Cr(VI) (CrO42−/Cr2O72− ions) and 4-NP (4-nitrophenol) simultaneously with high selectivity and sensitivity and low detection limits in aqueous solution through fluorescence quenching. Furthermore, the mechanism for the selective sensing of Cr3+, CrO42−, Cr2O72− or 4-NP can mainly be explained by the competition between the absorption of the analytes and the excitation/emission of Zn-MOF-1, and the electronic interactions between Zn-MOF-1 and the analytes.

Graphical abstract: An ultrastable zinc(ii)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(iii), Cr(vi) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2017
Accepted
29 Aug 2017
First published
29 Aug 2017

J. Mater. Chem. A, 2017,5, 20035-20043

An ultrastable zinc(II)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(III), Cr(VI) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity

X. Guo, F. Zhao, J. Liu, Z. Liu and Y. Wang, J. Mater. Chem. A, 2017, 5, 20035 DOI: 10.1039/C7TA05896A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements