Issue 47, 2017

Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films

Abstract

We demonstrate the atmospheric pressure chemical vapor deposition of methyl ammonium bismuth iodide ((CH3NH3)3Bi2I9 or MA3Bi2I9) films. MA3Bi2I9 possesses an indirect optical bandgap of 1.80 eV and a room temperature excitonic peak at 511 nm. In contrast to recent reports, the films are n-type semiconductors with a room temperature carrier concentration of 3.36 × 1018 cm−3 and a Hall mobility of 18 cm2 V−1 s−1, which are superior to those of solution-processed, undoped films. The precursors used for the deposition are methylammonium iodide and bismuth iodide which are co-sublimated at 199 °C and 230 °C, respectively, in an Ar flow inside a tube furnace with a variable temperature profile. The substrate temperature is set at 160 °C, and dense polycrystalline films (∼775 nm thick) are deposited. Extensive characterization combined with first-principles density functional theory calculations unravels the synthesis–structure–property relationship in these films. The degradation of properties under ambient conditions results from film oxidation with a characteristic bi-exponential decay in resistivity, signifying a fast surface oxidation followed by a slower oxidation of the bulk.

Graphical abstract: Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2017
Accepted
30 Oct 2017
First published
31 Oct 2017

J. Mater. Chem. A, 2017,5, 24728-24739

Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films

X. Chen, Y. Myung, A. Thind, Z. Gao, B. Yin, M. Shen, S. B. Cho, P. Cheng, B. Sadtler, R. Mishra and P. Banerjee, J. Mater. Chem. A, 2017, 5, 24728 DOI: 10.1039/C7TA06578G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements