Issue 45, 2017

Efficient PbS quantum dot solar cells employing a conventional structure

Abstract

New-generation solar cells based on colloidal lead chalcogenide (PbX) quantum dots (CQDs) are promising low-cost solution-processed photovoltaics. However, current state-of-the art CQDs are all using an inverted device architecture. The performance gap between CQD solar cells with conventional and inverted structures is much larger than that for other solution-processed photovoltaics such as organic and perovskite solar cells, which may restrict the future development of CQD solar cells. Here, we reported a record-high power conversion efficiency of 8.45% for conventionally structured PbS QD solar cells by the introduction of a unique conjugated polymer PDTPBT as the anode buffer layer. With the modification of the anode, the device performance was largely improved through a dramatic enhancement in open circuit voltage (Voc), which can be attributed to the enhanced hole extraction to the anode after PDTPBT modification. Meanwhile, the polymer layer can also efficiently improve charge separation and reduce interfacial charge recombination as well as reverse saturation current density, which result in significantly enhanced Voc. More importantly, our results proposed a new conventional architecture for QD solar cells which can avoid the complex processing of metal oxides and is free of light-soaking. This new device structure may offer more flexibility in future device design and show potential advantages in large-scale manufacturing by simplifying the fabrication process.

Graphical abstract: Efficient PbS quantum dot solar cells employing a conventional structure

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2017
Accepted
27 Oct 2017
First published
27 Oct 2017

J. Mater. Chem. A, 2017,5, 23960-23966

Efficient PbS quantum dot solar cells employing a conventional structure

K. Lu, Y. Wang, J. Yuan, Z. Cui, G. Shi, S. Shi, L. Han, S. Chen, Y. Zhang, X. Ling, Z. Liu, L. Chi, J. Fan and W. Ma, J. Mater. Chem. A, 2017, 5, 23960 DOI: 10.1039/C7TA07014D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements