Issue 47, 2017

The unique chemistry of thiuram polysulfides enables energy dense lithium batteries

Abstract

Organosulfur compounds are cheap and abundant cathode materials that can offer high specific energies. Herein, we explore for the first time, the common vulcanization accelerators viz. thiuram polysulfides embedded in carbon nanotubes as binder-free cathodes in lithium batteries that show 3 highly reversible redox reactions (3 discharge plateaus) and high material utilization (up to 97%). We use electrochemical characterization techniques, first-principles calculations, XPS, XRD, FTIR, and SEM to gain insight into the chemical transformations occurring during battery cycling. We identify that the mesomeric form of lithium pentamethylene dithiocarbamate with a positive nitrogen center, formed in the discharge, can act as polysulfide and sulfide anchors through strong coulombic interactions thus enabling a capacity retention of 87% after 100 cycles at C/5 rate. A high loading cathode with an areal capacity of 5.3 mA h cm−2 tested under a low electrolyte to active material ratio of 3 μL mg−1 yields an active material specific energy of 1156 W h kg−1 thus demonstrating the potential of this class of compounds in high specific energy lithium batteries.

Graphical abstract: The unique chemistry of thiuram polysulfides enables energy dense lithium batteries

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2017
Accepted
06 Nov 2017
First published
08 Nov 2017

J. Mater. Chem. A, 2017,5, 25005-25013

The unique chemistry of thiuram polysulfides enables energy dense lithium batteries

A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj and Y. Fu, J. Mater. Chem. A, 2017, 5, 25005 DOI: 10.1039/C7TA07460C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements