Issue 47, 2017

Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO2

Abstract

Hybridisation is a powerful strategy towards the synthesis of next generation multifunctional materials for environmental and sustainable energy applications. Here, we report a new inorganic/nanocarbon hybrid material prepared by atomically controlled deposition of a monocrystalline TiO2 layer that conformally coats a macroscopic carbon nanotube (CNT) fiber. Through X-ray diffraction, Raman spectroscopy and photoemission spectroscopy we detect the formation of a covalent Ti–O–C bond at the TiO2/CNT interface and a residual strain of approximately 0.7–2%, which is tensile in TiO2 and compressive in the CNT. It arises after deposition of the amorphous oxide onto the CNT surface previously functionalized by the oxygen plasma used in ALD. These features are observed in samples of different TiO2 thicknesses, in the range from 10 to 80 nm. Ultraviolet photoemission spectroscopy on a 20 nm-thick TiO2 coated sample gives a work function of 4.27 eV, between that of TiO2 (4.23 eV) and the CNT fiber (4.41 eV), and the presence of new interband gap states that shift the valence band maximum to 1.05 eV below the Fermi level. Photoelectrochemical measurements demonstrate electron transfer from TiO2 to the CNT fiber network under UV irradiation. Electrochemical impedance spectroscopy measurements reveal a low resistance for charge transfer and transport, as well as a large capacitance. Our results point to the fact that these hybrids, in which each phase has nanometric thickness and the “current collector” is integrated into the material, are very different from conventional electrodes and can provide a number of superior properties.

Graphical abstract: Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO2

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2017
Accepted
03 Nov 2017
First published
03 Nov 2017

J. Mater. Chem. A, 2017,5, 24695-24706

Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO2

A. Moya, N. Kemnade, M. R. Osorio, A. Cherevan, D. Granados, D. Eder and J. J. Vilatela, J. Mater. Chem. A, 2017, 5, 24695 DOI: 10.1039/C7TA08074C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements