Issue 45, 2017

Thin MoS2 nanosheets grafted MOFs-derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting

Abstract

Active and stable non-precious metal electrocatalysts are critical for the large-scale production of hydrogen/oxygen. Herein, a facile strategy for the in situ growth of MOFs combined with carbonization and subsequent solvothermal treatment for the rational design of thin MoS2 nanosheets grafted Co–N–C flakes (CoNC@MoS2) and grown on electrospun carbon nanofibers (CNFs) as bifunctional electrocatalysts for both hydrogen and oxygen evolution reactions (HER/OER) is reported. Binder-free CoNC@MoS2/CNF films exhibited unique hierarchical architectures with interconnected vine-like CNFs, which imparted favorable flexibility and satisfactory electrical conductivity to the self-supported electrocatalysts for electrochemical reactions. Due to the synergistic effect of the CoNC@MoS2 hybrid nanostructures and fast mass-transport properties of porous carbons, the resultant CoNC@MoS2/CNFs exhibited high catalytic activities and favorable stabilities for the HER and OER in a basic medium. When acting as electrocatalytic electrodes for overall water splitting, CoNC@MoS2/CNF films displayed a low overpotential of 1.62 V to generate a current density of 10 mA cm−2 with remarkable stability at different voltages for 200 000 s, and even outperformed Pt/C–RuO2 electrode in high current density water electrolysis. This study highlights the rational design of hybrid nanostructures based on MOFs and CNFs as efficient self-supported electrocatalysts, opening new possibilities for the fabrication of functional free-standing materials in energy chemistry.

Graphical abstract: Thin MoS2 nanosheets grafted MOFs-derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2017
Accepted
25 Oct 2017
First published
25 Oct 2017

J. Mater. Chem. A, 2017,5, 23898-23908

Thin MoS2 nanosheets grafted MOFs-derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting

D. Ji, S. Peng, L. Fan, L. Li, X. Qin and S. Ramakrishna, J. Mater. Chem. A, 2017, 5, 23898 DOI: 10.1039/C7TA08166A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements