Issue 48, 2017

Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution

Abstract

For all electrocatalysts (even Pt), the kinetics of the hydrogen evolution reaction (HER) in alkaline environments are more sluggish by a factor of two to three compared to those in acidic solutions. Here, we demonstrated the preparation of a novel ruthenium/nitrogen-doped carbon (Ru/NC) electrocatalyst supported by graphite foam, in which abundant, singly dispersed Ru atoms were chelated to a nitrogen-doped carbon matrix. In a 1 M KOH aqueous solution, the resultant Ru/NC electrocatalyst exhibited excellent electrocatalytic HER activity with an extremely low overpotential of only 21 mV at 10 mA cm−2 and an excellent mass current density as high as 8 A mgRu−1 at 100 mV, which is superior to the values for reported electrocatalysts (overpotentials of >50 mV at 10 mA cm−2), even Pt catalysts (overpotential of ∼36 mV at 10 mA cm−2). Importantly, the inherent turnover frequency (TOF) value (per Ru atom) of the Ru/NC electrocatalyst reaches 4.55 s−1, which is 3.2 times higher than that of the Pt catalyst (1.41 s−1). Electrochemical analyses and structural characterization revealed that atomically dispersed Ru is responsible for the outstanding HER activity of the Ru/NC electrocatalyst because of a substantially accelerated Volmer step. The outstanding HER performance gives the Ru/NC electrocatalyst promising potential for practical hydrogen production applications.

Graphical abstract: Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2017
Accepted
16 Nov 2017
First published
16 Nov 2017

J. Mater. Chem. A, 2017,5, 25314-25318

Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution

J. Zhang, P. Liu, G. Wang, P. P. Zhang, X. D. Zhuang, M. W. Chen, I. M. Weidinger and X. L. Feng, J. Mater. Chem. A, 2017, 5, 25314 DOI: 10.1039/C7TA08764K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements