Issue 4, 2017

Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection

Abstract

In recent years, the development of artificial nanostructured enzymes has received enormous interest in nanobiotechnology due to their advantages over natural enzymes. In the present work, different amounts (5, 10, and 20 wt%) of Co3O4 nanoparticle decorated CeO2 hybrid flower-like microspheres (Co3O4@CeO2) have been investigated for peroxidase-like activity and it was found that 10 wt% of Co3O4@CeO2 exhibited excellent peroxidase-like activity for the catalytic oxidation of the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate in the presence of H2O2. The formation of more Ce3+ ions associated with the oxygen vacancies and a strong synergistic interaction between CeO2 and Co3O4 may be responsible for the enhanced peroxidase-like activity. Based on their peroxidase activity, Co3O4@CeO2 hybrid microspheres were used for the colourimetric detection of glucose. It was found that Co3O4@CeO2 hybrid microspheres showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also improved with a limit as low as 1.9 μM. Thus, we believe that Co3O4@CeO2 hybrid flower-like microspheres with high peroxidase-like activity can be exploited for biosensing applications.

Graphical abstract: Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2016
Accepted
10 Dec 2016
First published
12 Dec 2016

J. Mater. Chem. B, 2017,5, 720-730

Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection

D. Jampaiah, T. Srinivasa Reddy, V. E. Coyle, A. Nafady and S. K. Bhargava, J. Mater. Chem. B, 2017, 5, 720 DOI: 10.1039/C6TB02750D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements