Issue 35, 2017

Trastuzumab-decorated nanoparticles for in vitro and in vivo tumor-targeting hyperthermia of HER2+ breast cancer

Abstract

In this study, a magnetic core–shell modified tumor-targeting nanocarrier (MNPs-PEG–TRA) was engineered and demonstrated for the efficient in vitro and in vivo hyperthermia treatment of breast cancer. Magnetic nanoparticles were used as the initial nanocarriers and modified via PEGylation followed by immobilization of Trastuzumab (TRA) with tumor-targeting function towards cancer cells. The hyperthermia performance of the developed targeting drug delivery system was explored using an in vitro study with SK-BR-3 cancer cells and an in vivo study using animal models (mouse) with DMBA-induced breast cancer. The average size of the engineered system was about 100 nm and its zeta potential was about +13 mV, whereby the stability of the system in biological media is enormously enhanced while the possibility of it being removed via the immune system is diminished. The investigation was pursued based on comparing the changes in growth inhibition rates of HSF 1184, MDA-MB-231, MDA-MB-468 and SK-BR-3 cell lines at different temperatures (37 °C, 40 °C, 42 °C, and 45 °C). Compared with bare MNPs and MNPs-PEG, a remarkably enhanced hyperthermia effect using MNPs-PEG–TRA was observed not only in cultured SK-BR-3 cells in vitro but also in an in vivo DMBA tumor bearing mice model. These results are attributed to an about 4 fold higher concentration of MNPs-PEG–TRA carriers in the tumor site compared to the other organs confirming the considerable potential of the magnetic tumor-targeting hyperthermia concept for breast cancer treatment.

Graphical abstract: Trastuzumab-decorated nanoparticles for in vitro and in vivo tumor-targeting hyperthermia of HER2+ breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2017
Accepted
15 Aug 2017
First published
15 Aug 2017

J. Mater. Chem. B, 2017,5, 7369-7383

Trastuzumab-decorated nanoparticles for in vitro and in vivo tumor-targeting hyperthermia of HER2+ breast cancer

J. Hamzehalipour Almaki, R. Nasiri, A. Idris, M. Nasiri, F. A. Abdul Majid and D. Losic, J. Mater. Chem. B, 2017, 5, 7369 DOI: 10.1039/C7TB01305A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements