Issue 35, 2017

A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing

Abstract

Treatment of diabetic wounds with a rapid healing performance remains a critical clinical challenge. An extracellular matrix (ECM)-biomimetic structure has shown promise in promoting tissue regeneration through a mediating cellular microenvironment. Herein, we report bone ECM-biomimetic cell-free nanofibrous scaffolds for enhancing healing in diabetic full-thickness wounds. This bioactive nanofibrous matrix was composed of ECM-componential collagen (Col, mimicking protein), polycaprolactone (PCL), and bioactive glass nanoparticles (BGNs, mimicking biological apatite) (CPB). The influence and mechanism of CPB on endothelial cell behaviors, angiogenic and healing abilities were investigated in a diabetic wound rat model. CPB significantly improved attachment and proliferation of endothelial cells, and upregulated the expression of the angiogenesis marker (CD31). In vivo, CPB also significantly enhanced the angiogenesis, through greatly upregulating the mRNA and protein expressions of Hif-1α, VEGF, Col1 and α-SMA. Furthermore, due to rapid angiogenesis, granulation tissue formation, collagen matrix remodeling and epidermis differentiation were accelerated in the CPB group, and as a result efficient diabetic wound healing was observed. Our results demonstrated that the cell-free bone-ECM-biomimetic BGN-based nanofibrous matrix could efficiently enhance blood tissue regeneration and diabetic wound healing without additional growth factors. Our biomimetic materials system may also be suitable for other blood vessel-related tissue repair and regeneration processes.

Graphical abstract: A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2017
Accepted
26 Jul 2017
First published
27 Jul 2017

J. Mater. Chem. B, 2017,5, 7285-7296

A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing

W. Gao, W. Jin, Y. Li, L. Wan, C. Wang, C. Lin, X. Chen, B. Lei and C. Mao, J. Mater. Chem. B, 2017, 5, 7285 DOI: 10.1039/C7TB01484H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements