Issue 46, 2017

A reactive oxygen species (ROS)-responsive low molecular weight gel co-loaded with doxorubicin and Zn(ii) phthalocyanine tetrasulfonic acid for combined chemo-photodynamic therapy

Abstract

Low molecular weight gels (LMWGs) have significant advantages in drug delivery such as high drug loading capacity, in situ delivery of drug to the lesion site, sustaining drug release with excellent bioavailability, and minimized side effects. Here, we synthesized a reactive oxygen species (ROS)-responsive gelator to prepare an injectable gel. An anticancer drug, doxorubicin hydrochloride (DOX), and a photosensitizer, Zn(II) phthalocyanine tetrasulfonic acid (ZnPCS4), were loaded into the gel for combined chemo-photodynamic therapy. The ROS-responsive gelator was characterized by proton nuclear magnetic resonance (1H NMR) and the morphology of gels was investigated by scanning electron microscopy (SEM). The rheological properties and destruction–recovery capability of both blank and drug-loaded gels were studied. The cytotoxicity of LMWGs against 3T3 fibroblasts and 4T1 breast cancer cells was tested. The in vitro drug release of both drugs was studied and the in vivo anticancer activities of DOX–ZnPCS4-coloaded LMWGs were investigated in tumor-bearing mice. The results revealed that the injectable ROS-responsive DOX–ZnPCS4-coloaded LMWGs exhibited excellent anti-tumor efficacy by a synergistic therapy.

Graphical abstract: A reactive oxygen species (ROS)-responsive low molecular weight gel co-loaded with doxorubicin and Zn(ii) phthalocyanine tetrasulfonic acid for combined chemo-photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2017
Accepted
06 Nov 2017
First published
08 Nov 2017

J. Mater. Chem. B, 2017,5, 9157-9164

A reactive oxygen species (ROS)-responsive low molecular weight gel co-loaded with doxorubicin and Zn(II) phthalocyanine tetrasulfonic acid for combined chemo-photodynamic therapy

L. Xu, M. Zhao, Y. Yang, Y. Liang, C. Sun, W. Gao, S. Li, B. He and Y. Pu, J. Mater. Chem. B, 2017, 5, 9157 DOI: 10.1039/C7TB02359F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements