Issue 43, 2017

Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging

Abstract

Aggregation-induced emission (AIE)-active compounds are attractive fluorescent materials for applications in chemical and biological sensing. The AIE effect of such materials amplifies changes in the fluorescence signal due to the physical state transformation from aggregation to disaggregation, which can be employed for detecting various analytes with high sensitivity. In particular, specific bio-active analyte recognition is not only very interesting but also challenging. In this paper, we report a set of novel AIE-active fluorescent probes containing pyridiniums and boric acid groups (TPA-PP, TPA-PPA-1, TPA-PPA-2, TPA-PPA-3), which has been developed for adenosine 5′-triphosphate (ATP) recognition. These probes with two types of interaction modes and multiple connection sites toward ATP molecules are able to selectively discriminate ATP among other bioactive anions with a significant enhancement in fluorescence emission. In particular, in the application of cell imaging, as the number of positive charges and boric acid group increased further, the probes could penetrate into cells, and then enter into the nucleus very specifically. These results clearly demonstrate that the newly developed sensors are suitable for specific tracing of different cell organelles with a height visualization and retention ability. Therefore, all of them are confirmed as promising alternatives for live cell imaging in the future.

Graphical abstract: Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2017
Accepted
22 Sep 2017
First published
22 Sep 2017

J. Mater. Chem. B, 2017,5, 8525-8531

Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging

H. Ma, M. Yang, C. Zhang, Y. Ma, Y. Qin, Z. Lei, L. Chang, L. Lei, T. Wang and Y. Yang, J. Mater. Chem. B, 2017, 5, 8525 DOI: 10.1039/C7TB02399E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements