Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect
Abstract
A new self-powered, stretchable, fiber-based electronic-skin (e-skin) has been fabricated for actively detecting human motion and environmental atmosphere. Several bundles of carbon fibers (coated with polydimethylsiloxane (PDMS) or polypyrrole (Ppy)) were woven together, forming a flexible fiber-based e-skin. The triboelectric current of the e-skin was dependent on the strain deformation and the environmental atmosphere. The e-skin can actively detect various human motions, such as finger touch, joint motion, skin deformation and slight stretching. Each PDMS–Ppy crossing point can be employed as an independent unit, and these units can output triboelectric current individually, realizing the tactile perception. The e-skin can also monitor volatile organic compounds in the atmosphere with high sensitivity, recovery and selectivity, (e.g. upon exposure to 1200 ppm methanol vapor, the triboelectric current of the e-skin decreased from 41.17 (in air) to 15.12 nA). The working mechanism is based on the triboelectrification/gas-sensing coupling effect. This new device architecture and material system can promote the development of a self-powered multifunctional e-skin.