Luminescence photoswitching of Ho-doped Na0.5Bi2.5Nb2O9 ferroelectrics: the luminescence readout process†
Abstract
Luminescent switching materials upon photochromic reactions have potential applications in optical switching and high-density optical data storage in optoelectronic devices. To avoid interference and destruction of information in practical data storage applications, a nondestructive luminescence readout is essential. However, it is still unclear how to select the optimized excitation and emission bands to avoid the photochromic reaction during the “reading” process while maintaining high luminescence contrast and stability in inorganic photochromic materials. On the basis of the nonradiative energy transfer mechanism, Ho3+ ions were introduced into the Na0.5Bi2.5Nb2O9 host to obtain efficient luminescence switching due to their special excitation (451 nm) and emission (547 nm) characteristics. Under 407 nm irradiation (“writing”), the photochromic phenomenon can be effectively read out by measuring the changes in the luminescence emission intensity. The luminescence switching contrast increased up to 94%. Importantly, the excitation and emission energies did not significantly induce new photochromic reactions, causing less destruction to the material and the luminescence readout process. This outcome is superior to our previously reported results. Furthermore, the luminescence switching properties exhibit hardly any degradation after undergoing several cycles of the “writing”, “reading” and “erasing” processes, indicating excellent reversibility.