Issue 2, 2017

Cu2+-Selectivity gated photochromism in Schiff-modified diarylethenes with a star-shaped structure

Abstract

A great deal of effort has been devoted to developing gated photochromic systems due to their advantages in the smart materials and opto-electronic fields, whereas the gating function through certain ions has rarely been addressed. Since the photochromic materials gated by ions can be readily further processed into a multi-functional molecular switch and probe, we herein designed and conveniently synthesized a star-shaped Schiff-based diarylethene derivative showing typical photochromic properties in solution. This compound possesses two response channels (colorimetric and fluorogenic) to Cu2+ ions with photoswitching characteristics, making it a viable photochromic probe. It is noteworthy that its photochromic reactivity can be locked when Cu2+ ions are introduced into the solution. Moreover, the photoinactive and photoactive states can be interchanged reversibly by binding Cu2+ ions and unbinding Cu2+ ions using EDTA, which shows promise for application in multi-controlled molecular switches and smart materials. The mechanism of the photochromic properties locked by Cu2+ ions is reasonably proposed by theoretical simulations. These results could be valuable for the further development of molecular switching systems with multiple stimuli responses.

Graphical abstract: Cu2+-Selectivity gated photochromism in Schiff-modified diarylethenes with a star-shaped structure

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2016
Accepted
01 Dec 2016
First published
01 Dec 2016

J. Mater. Chem. C, 2017,5, 282-289

Cu2+-Selectivity gated photochromism in Schiff-modified diarylethenes with a star-shaped structure

S. Wang, X. Li, W. Zhao, X. Chen, J. Zhang, H. Ågren, Q. Zou, L. Zhu and W. Chen, J. Mater. Chem. C, 2017, 5, 282 DOI: 10.1039/C6TC04756D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements