Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature†
Abstract
Two-dimensional (2D) superconductors have attracted great attention in recent years due to the possibility of new phenomena in lower dimensions. With many bulk transition metal carbides being well-known conventional superconductors, here we perform first-principles calculations to evaluate the possible superconductivity in a 2D monolayer Mo2C. Three candidate structures (monolayer alpha-Mo2C, 1T MXene-Mo2C, and 2H MXene-Mo2C) are considered and the most stable form is found to be 2H MXene-Mo2C. Electronic structure calculations indicate that both unpassivated and passivated 2H forms exhibit metallic properties. We obtain phonon frequencies and electron–phonon couplings using density-functional perturbation theory, and based on the BCS theory and the McMillan equation, estimate the critical temperatures to be in the ∼0–13 K range, depending on the species of surface termination (O, H and OH). The optimal termination group is H, which can increase the electron–phonon coupling and bring the critical temperature to 13 K. This shows a rather high critical temperature, tunable by surface termination, making this 2D carbide an interesting test bed for low-dimensional superconductivity.