Issue 24, 2017

Mechanochromism and electroluminescence in positional isomers of tetraphenylethylene substituted phenanthroimidazoles

Abstract

The study of aggregation-induced emission (AIE) luminogens has gained momentum due to their remarkable luminogenic properties and applications in mechano-sensors and organic light-emitting diodes (OLEDs). In this article we have studied three positional isomers (ortho, meta, and para) of phenanthroimidazoles 3a–3c and explored their AIE, mechanochromic and electroluminescence behavior. The phenanthroimidazoles 3a–3c were synthesized by the Suzuki cross-coupling reaction of (2-bromo/3-bromo/4-bromo)phenathroimidazoles 2a–2c with 4-(1,2,2-triphenylvinyl)phenylboronic acid pinacol ester in good yields. The phenanthroimidazoles 3a–3c exhibit strong AIE. The mechanochromic study reveals reversible mechanochromism with good color contrast between blue and green colors. The ortho (3a) and meta (3b) isomers exhibit a grinding induced spectral shift of 98 nm while the para-isomer (3c) exhibits a spectral shift of 43 nm. Moreover, 3a–3c were explored as non-doped blue emitters in efficient organic light-emitting diodes. Among the three emitters, 3c provided a high quantum efficiency of 4.0% in a non-doped blue device.

Graphical abstract: Mechanochromism and electroluminescence in positional isomers of tetraphenylethylene substituted phenanthroimidazoles

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2017
Accepted
24 May 2017
First published
24 May 2017

J. Mater. Chem. C, 2017,5, 6014-6020

Mechanochromism and electroluminescence in positional isomers of tetraphenylethylene substituted phenanthroimidazoles

T. Jadhav, J. M. Choi, J. Shinde, J. Y. Lee and R. Misra, J. Mater. Chem. C, 2017, 5, 6014 DOI: 10.1039/C7TC00950J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements